Descargo de responsabilidad: Este sitio web se actualiza con frecuencia. Parte de su contenido puede estar disponible en inglés hasta que se haya traducido todo el contenido.

Evidencia usada para actualizar la lista de afecciones subyacentes que aumentan el riesgo que tiene una persona de enfermarse gravemente a causa del COVID-19

Actualización: 25 de junio de 2020

Las actualizaciones realizadas a la lista de afecciones subyacentes que ponen a una persona en un riesgo mayor de enfermarse gravemente a causa del COVID-19 se basaron en informes publicados, artículos en imprenta, preimpresiones sin revisión y en los datos internos disponibles entre el 1 de diciembre del 2019 y el 29 de mayo del 2020. Esta lista es un documento dinámico que puede ser actualizado periódicamente por los CDC, y que puede cambiar rápidamente a medida que evoluciona la ciencia. Enfermarse gravemente a causa del COVID-19 implica por definición: hospitalización, admisión a una UCI, intubación o asistencia respiratoria mecánica, o muerte.

El nivel de evidencia para cada afección fue determinado por los revisores de los CDC según la información disponible acerca del COVID-19. Se agregaron afecciones a la lista (si no estaban ya en la lista anterior de afecciones subyacentes [publicada originalmente en marzo del 2020]) si la evidencia acerca de una asociación con el hecho de enfermarse gravemente a causa del COVID-19 cumplía con cualquiera de los siguientes criterios:

  • Evidencia más sólida y contundente: definida como evidencia contundente de múltiples estudios pequeños o una fuerte asociación de un estudio grande,
  • Evidencia mixta: definida como múltiples estudios que llegaron a diferentes conclusiones acerca del riesgo asociado a una afección, o
  • Evidencia limitada: definida como evidencia contundente de una cantidad pequeña de estudios. Con base en la categorización de la asociación entre una afección y una enfermedad grave a causa del COVID-19, se añade la afección a la lista (si no estaba ya en la lista anterior de afecciones subyacentes [publicada originalmente en marzo del 2020]).

Los calificadores de las afecciones que figuran en la lista anterior fueron añadidos o quitados en caso de haber una fuerte evidencia que respaldase que se deba realizar una ampliación acerca de la afección. Las afecciones que figuran en la lista anterior se debían quitar en caso de haber evidencia fuerte y sólida que demostrase la falta de asociación con los resultados graves. Según este criterio, no se quitaron afecciones de la lista anterior de afecciones subyacentes, con fecha de marzo del 2020.

Evidencia usada para actualizar la lista de afecciones subyacentes que aumentan el riesgo que tiene una persona de enfermarse gravemente a causa del COVID-19
Nivel de evidencia Afección Evidencia del impacto sobre la gravedad del COVID-19 Notas
Evidencia más sólida y contundente Afecciones cardiacas graves, tales como insuficiencia cardiaca, enfermedad de la arteria coronaria o miocardiopatías Estudio de cohorte [1, 2]
Metanálisis [3, 4]
Series de casos [5]
En la versión anterior de la lista figura como "Afecciones cardiacas graves"
Enfermedad renal crónica Series de casos [6, 7, 8]
Estudios de cohorte [9, 10, 11]
En la versión anterior de la lista figura como "Enfermedad renal crónica que requiere diálisis"
EPOC Metanálisis [4, 12]
Series de casos [13]
Estudio de cohorte [10]
En la versión anterior de la lista
Obesidad (IMC> 30) Estudios de cohorte [14, 15, 16, 17, 18]
Estudio sectorial [19]
En la versión anterior de la lista figura como "Obesidad grave (IMC ≥40)"
Enfermedad de células falciformes Series de casos [20, 21, 22, 23, 24] En la versión anterior de la lista
Trasplantes de órganos sólidos Series de casos [8, 25, 26, 27, 28, 29, 30] Nuevo en la lista actualizada del 25 de junio del 2020
Diabetes mellitus tipo 2 Series de casos [7]
Estudio longitudinal [31]
Estudio de cohorte [32, 33]
Metanálisis [34]
En la versión anterior de la lista
Evidencia mixta Asma Estudio de cohorte [10, 35, 36, 37]
Series de casos [13]
En la versión anterior de la lista
Enfermedad cerebrovascular Metanálisis [38, 39, 40, 41]
Síntesis de la evidencia [42]
Estudio de cohorte [1, 2, 43, 44, 45]
Nuevo en la lista actualizada del 25 de junio del 2020
Hipertensión Estudio de cohorte [1, 2, 45, 46, 47]
Revisión sistemática [48]
Metanálisis [3, 4, 49]
Nuevo en la lista actualizada del 25 de junio del 2020
Embarazo Revisión sistemática [50]
Estudio de casos y controles [51]
Series de casos [52, 53, 54, 55]
Estudio de cohorte [56, 57, 58]
Fumar Metanálisis [3, 59, 60, 61, 62] En la versión anterior de la lista
Uso de corticoides u otros medicamentos inmunosupresores Series de casos [63, 64, 65]
Estudio de cohorte [66, 67]
En la versión anterior de la lista
Evidencia limitada Trasplantes de médula ósea Revisión [68] En la versión anterior de la lista
VIH Series de casos [69, 70] En la versión anterior de la lista
Deficiencias inmunitarias Series de casos [71]
Revisión sistemática [72]
En la versión anterior de la lista
Trastornos metabólicos congénitos Estudio de cohorte [43, 73] Nuevo en la lista actualizada del 25 de junio del 2020; específico a poblaciones pediátricas para este momento
Afecciones neurológicas Estudio sectorial [74]
Estudio de cohorte [37, 45, 73]
Nuevo en la lista actualizada del 25 de junio del 2020; específico a poblaciones pediátricas para este momento
Otras enfermedades pulmonares crónicas Metanálisis [4]
Series de casos [13]
Estudio de cohorte [10, 75]
En la versión anterior de la lista
Enfermedad hepática Metanálisis [76]
Estudio de cohorte [77, 78]
Revisión de literatura [79]
En la versión anterior de la lista
Diabetes mellitus tipo 1 Series de casos [7]
Estudio de cohorte [32, 33]
Metanálisis [34]
En la versión anterior de la lista
Talasemia Series de casos [80]
Estudio sectorial [81]
En la versión anterior de la lista

Las citas en negrita indican que la referencia está publicada
Las citas en cursiva indican que la referencia no ha sido revisada por colegas
Las citas que no están en negrita ni en cursiva indican que la referencia está en prensa

Referencias:

  1. Chen, R., et al., Risk Factors of Fatal Outcome in Hospitalized Subjects With Coronavirus Disease 2019 from a Nationwide Analysis in China. CHEST.
  2. Williamson, E., et al., OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. medRxiv, 2020: p. 2020.05.06.20092999.
  3. Zheng, Z., et al., Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. Journal of Infection, 2020.
  4. Yang, J., et al., Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International Journal of Infectious Diseases, 2020. 94: p. 91-95.
  5. Guo, T., et al., Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiology, 2020.
  6. Garg, S., et al., Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 – COVID-NET, 14 States, March 1-30, 2020. MMWR Morbidity Mortality Weekly Report, 2020. 69(15): p. 458-464.
  7. Richardson, S., et al., Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA, 2020. 323(20): p. 2052-2059.
  8. Akalin, E., et al., Covid-19 and Kidney Transplantation. New England Journal of Medicine, 2020.
  9. Myers, L.C., et al., Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California. JAMA, 2020. 323(21): p. 2195-2198.
  10. Gold, J.A.W., et al., Characteristics and Clinical Outcomes of Adult Patients Hospitalized with COVID-19 – Georgia, March 2020. MMWR Morbidity Mortality Weekly Report, , 2020. 69(18): p. 545-550.
  11. Hirsch, J.S., et al., Acute kidney injury in patients hospitalized with COVID-19. Kidney international, 2020: p. S0085-2538(20)30532-9.
  12. Lippi, G. and B.M. Henry, Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respiratory medicine, 2020. 167: p. 105941-105941.
  13. CDC Covid-19 Response Team, Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019 – United States, February 12-March 28, 2020. MMWR Morbidity Mortality Weekly Report, 2020. 69(13): p. 382-386.
  14. Lighter, J., et al., Obesity in Patients Younger Than 60 Years Is a Risk Factor for COVID-19 Hospital Admission. Clinical Infectious Diseases, 2020.
  15. Hur, K., et al., Factors Associated With Intubation and Prolonged Intubation in Hospitalized Patients With COVID-19. Otolaryngology–Head and Neck Surgery. 0(0): p. 0194599820929640.
  16. Simonnet, A., et al., High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity (Silver Spring), 2020.
  17. Kalligeros, M., et al., Association of Obesity with Disease Severity Among Patients with Coronavirus Disease 2019. Obesity, 2020(n/a).
  18. Palaiodimos, L., et al., Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism, 2020. 108: p. 154262.
  19. Petrilli, C.M., et al., Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. medRxiv, 2020: p. 2020.04.08.20057794.
  20. McCloskey, K.A., et al., COVID-19 infection and sickle cell disease: a UK centre experience. British Journal of Haematology.
  21. Heilbronner, C., et al., Patients with sickle cell disease and suspected COVID-19 in a paediatric intensive care unit. British Journal of Haematology.
  22. Nur, E., et al., Vaso-occlusive crisis and acute chest syndrome in sickle cell disease due to 2019 novel coronavirus disease (COVID-19). American Journal of Hematology, 2020. 95(6): p. 725-726.
  23. Hussain, F.A., et al., COVID-19 infection in patients with sickle cell disease. British Journal of Haematology, 2020. 189(5): p. 851-852.
  24. Panepinto et al., Cases of COVID-19 among Persons with Sickle Cell Disease in the United States, March 20-May 21, 2020. Personal Pre-Publication Correspondence with Authors 2020.
  25. Ketcham, S.W., et al., Coronavirus Disease-2019 in Heart Transplant Recipients in Southeastern Michigan: A Case Series. Journal of Cardiac Failure, 2020.
  26. Latif, F., et al., Characteristics and Outcomes of Recipients of Heart Transplant With Coronavirus Disease 2019. JAMA Cardiology, 2020.
  27. Zhu, L., et al., Successful recovery of COVID-19 pneumonia in a renal transplant recipient with long-term immunosuppression. American Journal of Transplantation.
  28. Fernández-Ruiz, M., et al., COVID-19 in solid organ transplant recipients: A single-center case series from Spain. American Journal of Transplantation.
  29. Travi, G., et al., Clinical outcome in solid organ transplant recipients with COVID-19: A single-center experience. American Journal of Transplantation, 2020.
  30. Tschopp, J., et al., First experience of SARS-CoV-2 infections in solid organ transplant recipients in the Swiss Transplant Cohort Study. American Journal of Transplantation.
  31. Zhu, L., et al., Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metabolism, 2020. 31(6): p. 1068-1077.e3.
  32. Bode, B., et al., Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. Journal of Diabetes Science and Technology, 2020: p. 1932296820924469.
  33. Chen, Y., et al., Clinical Characteristics and Outcomes of Patients With Diabetes and COVID-19 in Association With Glucose-Lowering Medication. Diabetes Care, 2020.
  34. Fadini, G.P., et al., Prevalence and impact of diabetes among people infected with SARS-CoV-2. J Endocrinological Investigations, 2020. 43(6): p. 867-869.
  35. Mahdavinia, M., et al., Asthma prolongs intubation in COVID-19. The journal of allergy and clinical immunology. In practice, 2020: p. S2213-2198(20)30476-1.
  36. Chao, J.Y., et al., Clinical Characteristics and Outcomes of Hospitalized and Critically Ill Children and Adolescents with Coronavirus Disease 2019 (COVID-19) at a Tertiary Care Medical Center in New York City. The Journal of Pediatrics, 2020.
  37. DeBiasi, R.L., et al., Severe COVID-19 in Children and Young Adults in the Washington, DC Metropolitan Region. The Journal of Pediatrics, 2020.
  38. Pranata, R., et al., Impact of Cerebrovascular and Cardiovascular Diseases on Mortality and Severity of COVID-19 – Systematic Review, Meta-analysis, and Meta-regression. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association, 2020. 29(8): p. 104949-104949.
  39. Wang, B., et al., Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging, 2020. 12(7): p. 6049-6057.
  40. Ssentongo, P., et al., The association of cardiovascular disease and other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. medRxiv, 2020: p. 2020.05.10.20097253.
  41. Khan, M., et al., Effects of underlying morbidities on the occurrence of deaths in COVID-19 patients: A systematic review and meta-analysis. medRxiv, 2020: p. 2020.05.08.20095968.
  42. Martins-Filho, P.R., C.S.S. Tavares, and V.S. Santos, Factors associated with mortality in patients with COVID-19. A quantitative evidence synthesis of clinical and laboratory data. European journal of internal medicine, 2020. 76: p. 97-99.
  43. Shi, S., et al., Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiology, 2020.
  44. Wang, L., et al., Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. Journal of Infection, 2020. 80(6): p. 639-645.
  45. Killerby ME et al., Characteristics Associated with Hospitalization Among Patients with COVID-19 — Metropolitan Atlanta, Georgia, March–April 2020. MMWR Mobidity Mortality Weekly Report, 2020
  46. Guan, W.J., et al., Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. European Respiratory Journal, 2020. 55(5).
  47. Kim, L., et al., Interim Analysis of Risk Factors for Severe Outcomes among a Cohort of Hospitalized Adults Identified through the U.S. Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). medRxiv, 2020: p. 2020.05.18.20103390.
  48. Pranata, R., et al., Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: A systematic review, meta-analysis and meta-regression. Journal of the Renin-Angiotensin-Aldosterone System, 2020. 21(2): p. 1470320320926899.
  49. Matsushita, K., et al., The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: A systematic review and meta-analysis. medRxiv, 2020: p. 2020.04.05.20054155.
  50. Yang, Z., et al., Coronavirus disease 2019 (COVID-19) and pregnancy: a systematic review. The Journal of Maternal-Fetal & Neonatal Medicine, 2020: p. 1-4.
  51. Li, N., et al., Maternal and neonatal outcomes of pregnant women with COVID-19 pneumonia: a case-control study. Clinical Infectious Diseases, 2020.
  52. Collin, J., et al., Public Health Agency of Sweden’s Brief Report: Pregnant and postpartum women with severe acute respiratory syndrome coronavirus 2 infection in intensive care in Sweden. 2020. 99(7): p. 819-822.
  53. Yan, J., et al., Coronavirus disease 2019 in pregnant women: a report based on 116 cases. American Journal of Obstetrics and Gynecology, 2020.
  54. Breslin, N., et al., Coronavirus disease 2019 infection among asymptomatic and symptomatic pregnant women: two weeks of confirmed presentations to an affiliated pair of New York City hospitals. American Journal of Obstetrics & Gynecology MFM, 2020. 2(2, Supplement): p. 100118.
  55. Chen, L., et al., Clinical Characteristics of Pregnant Women with Covid-19 in Wuhan, China. 2020. 382(25): p. e100.
  56. Pierce-Williams, R.A.M., et al., Clinical course of severe and critical COVID-19 in hospitalized pregnancies: a US cohort study. American Journal of Obstetrics & Gynecology MFM, 2020: p. 100134.
  57. Savasi, V.M., et al., Clinical Findings and Disease Severity in Hospitalized Pregnant Women With Coronavirus Disease 2019 (COVID-19). Obstet Gynecol, 2020.
  58. Ellington S, Strid P, Tong VT, et al. Characteristics of Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status — United States, January 22–June 7, 2020. MMWR Morb Mortal Wkly Rep 2020;69:769–75.
  59. Patanavanich, R. and S.A. Glantz, Smoking Is Associated With COVID-19 Progression: A Meta-analysis. Nicotine & Tobacco Research, 2020.
  60. Guo, F.R., Active smoking is associated with severity of coronavirus disease 2019 (COVID-19): An update of a meta-analysis. Tobacco Induced Diseases, 2020. 18: p. 37.
  61. Zhao, Q., et al., The impact of COPD and smoking history on the severity of COVID-19: A systemic review and meta-analysis. Journal of Medical Virology, 2020.
  62. Lippi, G. and B.M. Henry, Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). European Journal of Internal Medicine, 2020. 75: p. 107-108.
  63. Di Giorgio, A., et al., Health status of patients with autoimmune liver disease during SARS-CoV-2 outbreak in northern Italy. Journal of hepatology, 2020: p. S0168-8278(20)30300-7.
  64. Marlais, M., et al., The severity of COVID-19 in children on immunosuppressive medication. The Lancet. Child & adolescent health, 2020: p. 10.1016/S2352-4642(20)30145-0.
  65. Montero-Escribano, P., et al., Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: A case series of 60 patients from Madrid, Spain. Multiple sclerosis and related disorders, 2020. 42: p. 102185-102185.
  66. Brenner, E.J., et al., Corticosteroids, but not TNF Antagonists, are Associated with Adverse COVID-19 Outcomes in Patients With Inflammatory Bowel Diseases: Results from an International Registry. Gastroenterology, 2020: p. 10.1053/j.gastro.2020.05.032.
  67. Michelena, X., et al., Incidence of COVID-19 in a cohort of adult and paediatric patients with rheumatic diseases treated with targeted biologic and synthetic disease-modifying anti-rheumatic drugs. Seminars in arthritis and rheumatism, 2020. 50(4): p. 564-570.
  68. Ljungman, P., et al., The challenge of COVID-19 and hematopoietic cell transplantation; EBMT recommendations for management of hematopoietic cell transplant recipients, their donors, and patients undergoing CAR T-cell therapy. Bone Marrow Transplantation, 2020.
  69. Härter, G., et al., COVID-19 in people living with human immunodeficiency virus: a case series of 33 patients. Infection, 2020: p. 1-6.
  70. Altuntas Aydin, O., H. Kumbasar Karaosmanoglu, and K. Kart Yasar, HIV/SARS-CoV-2 coinfected patients in Istanbul, Turkey. Journal of Medical Virology, 2020.
  71. Soresina, A., et al., Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatric Allergy and Immunology, 2020.
  72. Gao, Y., et al., Impacts of immunosuppression and immunodeficiency on COVID-19: A systematic review and meta-analysis. The Journal of infection, 2020: p. S0163-4453(20)30294-2.
  73. Parri, N., M. Lenge, and D. Buonsenso, Children with Covid-19 in Pediatric Emergency Departments in Italy. New England Journal of Medicine, 2020.
  74. Shekerdemian, L.S., et al., Characteristics and Outcomes of Children With Coronavirus Disease 2019 (COVID-19) Infection Admitted to US and Canadian Pediatric Intensive Care Units. JAMA Pediatrics, 2020.
  75. Cosgriff, R., et al., A multinational report to characterise SARS-CoV-2 infection in people with cystic fibrosis. Journal of Cystic Fibrosis, 2020.
  76. Mantovani, A., G. Beatrice, and A. Dalbeni, Coronavirus disease 2019 and prevalence of chronic liver disease: A meta-analysis. 2020. 40(6): p. 1316-1320.
  77. Moon, A.M., et al., High Mortality Rates for SARS-CoV-2 Infection in Patients with Pre-existing Chronic Liver Disease and Cirrhosis: Preliminary Results from an International Registry. Journal of Hepatology, 2020.
  78. Ji, D., et al., Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. J Hepatol, 2020.
  79. Garrido, I., R. Liberal, and G. Macedo, Review article: COVID-19 and liver disease—what we know on 1st May 2020. Alimentary Pharmacology & Therapeutics, 2020.
  80. Motta, I., et al., SARS-CoV-2 infection in beta thalassemia: Preliminary data from the Italian experience. American Journal of Hematology, 2020.
  81. Karimi, M., et al., Prevalence and Mortality due to Outbreak of Novel Coronavirus Disease (COVID-19) in β-Thalassemias: The Nationwide Iranian Experience.
Esta página fue revisada el 25 de junio del 2020